Why are Braids Orderable? by Patrick Dehornoy, at al.
2010
Number of pages: 206
In the decade since the discovery that Artin's braid groups enjoy a left-invariant linear ordering, several quite different approaches have been applied to understand this phenomenon. This book is an account of those approaches, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.
Mathematics Abstract Algebra Group Theory