Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Feb 2013]
Title:Object Detection in Real Images
View PDFAbstract:Object detection and recognition are important problems in computer vision. Since these problems are meta-heuristic, despite a lot of research, practically usable, intelligent, real-time, and dynamic object detection/recognition methods are still unavailable. We propose a new object detection/recognition method, which improves over the existing methods in every stage of the object detection/recognition process. In addition to the usual features, we propose to use geometric shapes, like linear cues, ellipses and quadrangles, as additional features. The full potential of geometric cues is exploited by using them to extract other features in a robust, computationally efficient, and less meta-heuristic manner. We also propose a new hierarchical codebook, which provides good generalization and discriminative properties. The codebook enables fast multi-path inference mechanisms based on propagation of conditional likelihoods, that make it robust to occlusion and noise. It has the capability of dynamic learning. We also propose a new learning method that has generative and discriminative learning capabilities, does not need large and fully supervised training dataset, and is capable of online learning. The preliminary work of detecting geometric shapes in real images has been completed. This preliminary work is the focus of this report. Future path for realizing the proposed object detection/recognition method is also discussed in brief.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.